翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Moore’s law : ウィキペディア英語版
Moore's law

Moore's law () is the observation that the number of transistors in a dense integrated circuit doubles approximately every two years. The observation is named after Gordon E. Moore, the co-founder of Intel and Fairchild Semiconductor, whose 1965 paper described a doubling every year in the number of components per integrated circuit, and projected this rate of growth would continue for at least another decade. In 1975, looking forward to the next decade, he revised the forecast to doubling every two years.〔
His prediction proved accurate for several decades, and the law was used in the semiconductor industry to guide long-term planning and to set targets for research and development.
Advancements in digital electronics are strongly linked to Moore's law: quality-adjusted microprocessor prices, memory capacity, sensors and even the number and size of pixels in digital cameras.
Digital electronics have contributed to world economic growth in the late twentieth and early twenty-first centuries.〔

Moore's law describes a driving force of technological and social change, productivity, and economic growth.〔
〕〔
〕〔
The period is often quoted as 18 months because of Intel executive David House, who predicted that chip performance would double every 18 months (being a combination of the effect of more transistors and the transistors being faster).〔(【引用サイトリンク】title=Moore's Law to roll on for another decade )
"Moore's law" should be considered an observation or projection and obviously not a physical or natural law. Although the rate held steady from 1975 until around 2012, the rate was faster during the first decade. In general, it is not logically sound to extrapolate from the historical growth rate into the indefinite future. For example, the 2010 update to the International Technology Roadmap for Semiconductors, predicted that growth would slow around 2013, and Gordon Moore in 2015 foresaw that the rate of progress would reach saturation: "I see Moore’s law dying here in the next decade or so."
Intel confirmed in 2015 that the pace of advancement has slowed, starting at the 22 nm node around 2012, and continuing at 14 nm. Brian Krzanich, CEO of Intel, announced that "our cadence today is closer to two and a half years than two.” This is scheduled to hold through the 10 nm node in late 2017. He cited Moore's 1975 revision as a precedent for the current deceleration, which results from technical challenges and is “a natural part of the history of Moore's law.”
==History==

In 1959, Douglas Engelbart discussed the projected downscaling of integrated circuit size in the article "Microelectronics, and the Art of Similitude". Engelbart presented his ideas at the 1960 International Solid-State Circuits Conference, where Moore was present in the audience.
For the thirty-fifth anniversary issue of ''Electronics'' magazine, which was published on April 19, 1965, Gordon E. Moore, who was working as the director of research and development at Fairchild Semiconductor at the time, was asked to predict what was going to happen in the semiconductor components industry over the next ten years. His response was a brief article entitled, "Cramming more components onto integrated circuits". Within his editorial, he speculated that by 1975 it would be possible to contain as many as 65,000 components on a single quarter-inch semiconductor.

The complexity for minimum component costs has increased at a rate of roughly a factor of two per year. Certainly over the short term this rate can be expected to continue, if not to increase. Over the longer term, the rate of increase is a bit more uncertain, although there is no reason to believe it will not remain nearly constant for at least 10 years.

His reasoning was a log-linear relationship between device complexity (higher circuit density at reduced cost) and time.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Moore's law」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.